Performance trade-offs in single-photon avalanche diode miniaturization.
نویسندگان
چکیده
Single-photon avalanche diodes (SPADs) provide photons' time of arrival for various applications. In recent years, attempts have been made to miniaturize SPADs in order to facilitate large-array integration and in order to reduce the dead time of the device. We investigate the benefits and drawbacks of device miniaturization by characterizing a new fast SPAD in a commercial 0.18 microm complementary metal oxide semiconductor technology. The device employs a novel and efficient guard ring, resulting in a high fill factor. Thanks to its small size, the dead time is only 5 ns, resulting in the fastest reported SPAD to date. However, the short dead time is accompanied by a high after-pulsing rate, which we show to be a limiting parameter for SPAD miniaturization. We describe a new and compact active-recharge scheme which improves signal-to-noise tenfold compared with the passive configuration, using a fraction of the area of state-of-the-art active-recharge circuits, and without increasing the dead time. The performance of compact SPADs stands to benefit such applications as high-resolution fluorescence-lifetime imaging, active-illumination three-dimensional imagers, and quantum key distribution systems.
منابع مشابه
Electrical μ-Lens Synthesis Using Dual-Junction Single-Photon Avalanche Diode
This work presents a dual-junction, single-photon avalanche diode (SPAD) with electrical μ-lens designed and simulated in 90 nm standard complementary metal oxide semiconductor (CMOS) technology. The evaluated structure can collect the photons impinging beneath the pixel guard ring, as well as the pixel active area. The fill factor of the SPAD increases from 12.5% to 42% in comparison with simi...
متن کاملA new single-photon avalanche diode in 90nm standard CMOS technology.
We report on the first implementation of a single-photon avalanche diode (SPAD) in 90nm complementary metal oxide semiconductor (CMOS) technology. The detector features an octagonal multiplication region and a guard ring to prevent premature edge breakdown using a standard mask set exclusively. The proposed structure emerged from a systematic study aimed at miniaturization, while optimizing ove...
متن کاملSingle-photon imaging in complementary metal oxide semiconductor processes
This paper describes the basics of single-photon counting in complementary metal oxide semiconductors, through single-photon avalanche diodes (SPADs), and the making of miniaturized pixels with photon-counting capability based on SPADs. Some applications, which may take advantage of SPAD image sensors, are outlined, such as fluorescence-based microscopy, three-dimensional time-of-flight imaging...
متن کاملAvalanche Detector with Ultraclean Response for Time-Resolved Photon Counting
Experimental tests have been carried out for characterizing the performance of a new single-photon avalanche diode. The detector is specifically designed for picosecond timecorrelated single photon counting, aiming to obtain a time response free from the tail effects and/or secondary bumps observed in all other available single-photon detectors. The experimental results confirm that an unpreced...
متن کاملDynamic Quenching for Single Photon Avalanche Diode Arrays
We propose the use of dynamic circuits for quenching avalanche events in single photon avalanche diode (SPAD) arrays. Two area-efficient, circuit solutions are presented in 0.35μm CMOS technology. These circuits contain no passive elements and consume shoot-through current only at triggering instants. The resulting reduction in power consumption and supply noise is essential to formation of lar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Review of scientific instruments
دوره 78 10 شماره
صفحات -
تاریخ انتشار 2007